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Diffuse-interface modelling of droplet impact
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The impact of micron-size drops on a smooth, flat, chemically homogeneous solid
surface is studied using a diffuse-interface model (DIM). The model is based on
the Cahn–Hilliard theory that couples thermodynamics with hydrodynamics, and
is extended to include non-90◦ contact angles. The (axisymmetric) equations are
numerically solved using a combination of finite- and spectral-element methods. The
influence of various process and material parameters such as impact velocity, droplet
diameter, viscosity, surface tension and wettability on the impact behaviour of drops
is investigated. Relevant dimensionless parameters are defined and, depending on the
values of the Reynolds number, the Weber number and the contact angle, which
for the cases considered here range from 1.3 to 130, 0.43 to 150 and 45◦ to 135◦,
respectively, the model predicts the spreading of a droplet with or without recoil or
even rebound of the droplet, totally or partially, from the solid surface. The wettability
significantly affects the impact behaviour and this is particularly demonstrated with
an impact at Re =130 and We= 1.5, where for θ < 60◦ the droplet oscillates a few
times before attaining equilibrium while for θ � 60◦ partial rebound of the droplet
occurs, i.e. the droplet breaks into two unequal sized drops. The size of the part that
remains in contact with the solid surface progressively decreases with increasing θ

until at a value θ ≈ 120◦ a transition to total rebound happens. When the droplet
rebounds totally, it has a top-heavy shape.

1. Introduction
Impact of drops on solid surfaces is central in many existing and emerging

technologies such as inkjet printing, spray coating, DNA microarrays, solder-jet
technology, spray cooling, application of pesticides etc. Such a diversity of applications
usually implies that the physical and operating conditions cover a broad range and
may include fluid dynamics, heat transfer and phase changes. Numerous studies of
the process employing theoretical, experimental and numerical techniques have been
reported since the original work done by Worthington (1876). A brief account of
previous work in the field is provided here; for an exhaustive survey see the review by
Rein (1993) whereas recent studies are summarized in Gunjal, Ranade & Chaudhari
(2005). Theoretical analyses, e.g. by Chandra & Avedisian (1991), Pasandideh-Fard
et al. (1996), Mao, Kuhn & Tran (1997) and Roisman, Rioboo & Tropea (2002),
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intended to predict the maximum extent of spreading that can be achieved under
given impact conditions, by equating the initial (kinetic) energy of the droplet to the
sum of the surface energy at maximum spreading and the energy dissipated during
spreading. Simplifying assumptions with respect to the droplet shape (at maximum
spreading frequently a circular disk shape is assumed) and the flow inside the droplet
(such as a stagnation-point flow) are necessary in order to facilitate an estimation
of the work done by the viscous forces. Also, the kinetic energy of the droplet
at maximum spreading is considered to be zero. The resulting expression for the
maximum diameter is found to give acceptable predictions only when Re � 1, We � 1
and θ is small. Park et al. (2003) changed the droplet shape assumption to a spherical
cap to improve the predictions at low Re and We and large θ . Recently, Fedorchenko,
Wang & Wang (2005) developed an analytical model, assuming a non-zero kinetic
energy of droplet at maximum spreading, to describe the effects of capillary and
viscous forces on initial and late stages of spreading. However, these analyses do not
predict the outcome of impact.

Experimental work, mostly flash photography to visualize the impact of millimetre-
size drops, has focused on the influence of surfactants (Pasandideh-Fard et al.
1996; Zhang & Basaran 1997; Crooks, Cooper-White & Boger 2001), viscoelasticity
of the droplet material (Bergeron et al. 2000; Crooks & Boger 2001; Crooks,
Cooper-White & Boger 2002), and surface roughness and wettability including
superhydrophobicity of the solid (Range & Feuillebois 1998; Renardy et al. 2003).
In addition, the effects of droplet diameter, impact velocity, viscosity and surface
tension of the liquid as well as the influence of heat transfer with and without
solidification (Zhao, Poulikakos & Fukai 1996b; Schiaffino & Sonin 1997; Bhola &
Chandra 1999; Aziz & Chandra 2000) were also studied and outcomes classified as
deposition, splash, rebound and partial rebound have been reported. However, only
a few experimental studies exist on impact of micron-size droplets under conditions
relevant to inkjet printing (Asai et al. 1993; Attinger, Zhao & Poulikakos 2000; van
Dam & Clerc 2004). Asai et al. (1993) studied the impact of micron-size drops on
different types of paper with the aim of developing a simple correlation between the
maximum spreading and Re and We as an aid in designing inkjet printers. They found
that the maximum spreading depends only on Re and We, irrespective of the paper
characteristics. With solder-jetting for surface-mount technologies in mind, Attinger
et al. (2000) investigated the effect of simultaneous flow and solidification on the
impact of micron-size molten metal drops and found that the solidified droplet surface
had ripples. Recently, van Dam & Clerc (2004) studied the impact of water droplets
of 60 to 100 µm in diameter on a solid substrate having advancing and receding
contact angles in the range of 15◦ to 70◦ and 0◦ to 5◦, respectively. The parameter
varied was the impact velocity, implying that both the Reynolds number and the
Weber number were changed simultaneously. They observed differences in impact at
We � 1.1 and We � 8 and concluded that this was due to the capillary force acting as
driving force for spreading in the former cases. Resolving the time and length scales
involved, typically about 100 µs and 100 µm, respectively, is experimentally difficult
and therefore we adopt a supporting numerical approach to help find the relevant
parameters and results of the process.

Numerical modelling of the droplet impact process should address: (i) tracking of
the droplet–ambient fluid interface that undergoes extreme deformation in a short
time and accounting for the surface tension, (ii) resolving the contact line singularity,
and (iii) incorporating effects of the substrate wettability. Notwithstanding these
complexities, a number of numerical studies have been reported (again) focusing on
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millimetre-size drops. Fukai et al. (1993) used a Lagrangian formulation implemented
in a finite-element method in an axisymmetric framework neglecting wetting effects,
which were accounted for in their subsequent work (Fukai et al. 1995). The contact
line singularity was resolved by using a slip model (Dussan V. & Davis 1974). Later
extensions by Zhao, Poulikakos & Fukai (1996a) and Attinger & Poulikakos (2001)
of their model included heat transfer with solidification. This methodology requires
frequent refinement of the mesh to cope with the large deformations experienced
by the droplet in a short time and also it needs ad hoc rules to handle topological
changes, such as breakup, when they occur. Concurrently, Pasandideh-Fard et al.
(1996) used an Eulerian approach with a volume tracking ‘fractional volume of fluid’
method that captures the interface through a colour function C. The position and the
shape of the interface that is required to account for the surface tension and contact
angle is reconstructed from the values of C using some approximation such as a
piecewise-linear interface construction. This interface reconstruction step may play an
important role in the low-We cases considered here and also in handling topological
transitions. Although they did not explicitly use any slip model, a mesh-dependent
slip is inherently present, shown by Renardy, Renardy & Li (2001), in the marker-
and-cell finite-difference method that was used to solve the system of equations.
Subsequently, Bussmann, Mostaghimi & Chandra (1999) and Pasandideh-Fard et al.
(2002) extended the method to three dimensions and included solidification. These
earlier numerical studies neglected the dynamics of the gas phase and modelled only
the liquid droplet phase treating it as a free-surface problem. Francois & Shyy (2003)
used the immersed-boundary method to model the impact process as a two-phase
flow problem. Recently, S̃ikalo et al. (2005) and Gunjal et al. (2005) applied the
fractional volume-of-fluid method to model the effect of a dynamic contact angle on
impact behaviour. Almost all of these studies were based on a classical sharp interface
method.

In this paper, we use the Cahn–Hilliard diffuse-interface approach to model the
impact of a micron-size liquid droplet on a perfectly smooth, chemically homogeneous
solid surface. Our objective is to understand the impact process of micron-size droplets
under conditions of low-to-moderate We, moderate Re and a wide range of contact
angles. These conditions are prevalent in inkjet printing (of polymers) which is recently
being explored as an alternative to photolithography in making patterned surfaces
for electronics and various other applications (Sirringhaus et al. 2000; Okamoto,
Suzuki & Yamamoto 2000; Kawase et al. 2003; de Gans, Duineveld & Schubert
2004).

Like the fractional volume-of-fluid method, the diffuse-interface model (DIM) also
considers impact as a two-phase flow problem and is based on the idea that the fluid–
fluid interface has a finite thickness over which various thermodynamic variables
change continuously. Recently, the diffuse-interface model has been used to model
a variety of physical phenomena, see for example, Anderson, McFadden & Wheeler
(1998). However, it was first used by van der Waals (1893) to explain why equilibrium
interfaces have surface tension, and, hence, DIM is endowed with capillarity. The
thickness of the interface is closely related to the finite range of molecular interactions
(Rowlinson & Widom 1989). The finite interaction range is represented by a non-local
effect in the free energy: the local free-energy density depends not only on the local
composition but also on the composition of the immediate environment (Davis &
Scriven 1982). By using a mean-field approximation, the non-local effect in the free
energy is represented by the dependence on the local composition gradients rather than
on the non-local composition (Cahn & Hilliard 1958). This free energy determines
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both the interfacial thickness and the surface tension, that appears after coupling
with the equations of motion as a distributed stress over the interfacial region. The
position and the shape of the interface is a part of the solution – that is continuous
throughout the system but may have large variations in the interfacial region – of the
governing equations of DIM i.e. it captures the interface. The resolution of the contact
line singularity is, in spite of applying a strict no-slip boundary condition, based on
diffusion driven by the gradient in chemical potential, as was shown by the analyses
performed by Seppecher (1996), Jacqmin (2000), Chen, Jasnow & Viñals (2000) and
more recently by Briant, Wagner & Yeomans (2004) and Briant & Yeomans (2004).
The diffuse-interface model can be extended to incorporate non-90◦ contact angles
(a 90◦ contact angle appears ‘naturally’ in the model). Following Cahn (1977) and
Jacqmin (2000) this has been achieved by postulating that the wall free energy which
captures the wall–fluid interactions is dependent only on the composition at the wall.
Recently Yarin et al. (2005) used a model similar to DIM to study the phase-change
behaviour of fluids in nanochannels, including the wetting effects.

The paper is organized as follows: § 2 summarizes the model equations of
DIM. Section 3 describes the system to which the equations of DIM are applied.
Section 4 gives the boundary conditions imposed while § 5 deals with the numerical
implementation of the governing equations. Results of droplet impact are presented
and discussed in § 6. Finally, in § 7 some conclusions are drawn.

2. Model equations
The diffuse-interface model used is a two-phase model wherein the thermodynamics

is coupled with the hydrodynamics and it is applied to a fluid, referred to as a binary
fluid, consisting of two partially miscible components (Lowengrub & Truskinovsky
1998; Verschueren 1999). In the present case, one of the fluid components corresponds
to the droplet whereas the other represents the ambient fluid. The individual
components of the binary fluid have a constant density and viscosity, whereas the
density and viscosity ratios between the components are typically of O(103) and
O(102–103), respectively. The thermodynamic formulation to account for large density
ratios results in a fairly complex, nonlinear model even when the flow is simplified
using the Hele-Shaw approximation (Lee, Lowengrub & Goodman 2002a, b). In the
current case, where inertia drives the flow, the complexity is likely to increase further.
Hence to simplify the model we neglect the density difference in the thermodynamic
formulation while retaining it in the hydrodynamic treatment. Such a simplification
possibly results in the neglect of some quasi-incompressible effects and induces an
error in the interfacial region, but can be rationalized by comparing the resulting
simplified model with the classical sharp-interface model (Lowengrub & Truskinovsky
1998). Also, the simplified model is similar to the phase-field model used to study
solidification of molten metal (Boettinger et al. 2002; Sekerka 2004).

The binary fluid is assumed to have a specific Helmholtz free energy which is based
on the work of Cahn & Hilliard (1958):

f (c, ∇c) = f0(c) + 1
2
ε|∇c|2, (2.1)

where c is the renormalized mass fraction of one of the components, f0 is
homogeneous part of the specific free energy and ε is the gradient-energy parameter.
The homogeneous part f0 is approximated by the so-called ‘c4’ approximation
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(Gunton, Miguel & Sahni 1983) also known as the Landau–Ginzburg free energy:

f0(c) = 1
4
βc4 − 1

2
αc2, (2.2)

where α and β are both positive constants for an isothermal system below its critical
temperature.

Combining (2.1) and (2.2), f can now be written as,

f = 1
4
βc4 − 1

2
αc2 + 1

2
ε|∇c|2. (2.3)

The chemical potential is defined as a variational derivative of the specific Helmholtz
free energy (2.3) with respect to concentration and is

µ =
δf

δc
= βc3 − αc − ε∇2c. (2.4)

For a planar interface (with z as the direction normal to the interface) at equilibrium,
the corresponding concentration profile is given by

c(z) = cB tanh

(
z√
2ξ

)
, (2.5)

where ξ =
√

ε/α is the interface thickness and cB = ±
√

α/β are the equilibrium bulk
concentration. For example, cB =

√
α/β corresponds to the droplet and cB = −

√
α/β

corresponds to the ambient fluid.
The interfacial tension γlv is defined as the excess free energy per unit surface area

due to the inhomogeneity in c in the interfacial region (Rowlinson & Widom 1989):

γlv = ρε

∫ ∞

−∞

(
dc

dz

)2

dz. (2.6)

Integrating (2.6) using the equilibrium concentration profile (2.5) yields

γlv =
2
√

2

3

ρεc2
B

ξ
. (2.7)

For mass conservation of individual components, the renormalized mass fraction c

satisfies the local balance equation:

∂c

∂t
+ v · ∇c = ∇ · M∇µ, (2.8)

where M is the mobility, which in general can be a function of c. In the above
equation, known as the convective Cahn–Hilliard equation, the diffusional flux is
assumed to be proportional to the gradient in chemical potential. This equation
without the convection term was originally used to describe the initial stages of
spinodal decomposition (Cahn 1964).

Governing equations for the flow are obtained by coupling the momentum and
total mass balance with the DIM equations, which yields a modified Navier–Stokes
equation (Lowengrub & Truskinovsky 1998; Verschueren 1999):

ρ

(
∂v

∂t
+ v · ∇v

)
= −∇p + ∇ · η[(∇v) + (∇v)T ] + ρ (µ∇c − ∇f ) + ρg, (2.9)

where p is the pressure, v is the barycentric velocity and g is the gravitational
force per unit mass. The density of the binary fluid ρ, now considered to be
a function of concentration c, is assumed to follow the simple mixture rule
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(Joseph & Renardy 1993):

1

ρ
=

1

ρd

(
c + 1

2

)
− 1

ρc

(
c − 1

2

)
, (2.10)

where ρd and ρc is the density of the droplet and ambient fluid, respectively. The vis-
cosity η, is assumed to have the following linear relationship with the concentration c:

η = ηd

(
c + 1

2

)
− ηc

(
c − 1

2

)
, (2.11)

where ηd and ηc are the viscosities of the droplet and ambient fluid, respectively.
In the equation of continuity, the density ρ, is retained inside the divergence

operation to give

(∇ · ρv) = 0. (2.12)

2.1. Non-dimensionalized equations

The governing equations are non-dimensionalized using the following dimensionless
variables:

c∗ =
c

cB

; ∇∗ = Di∇; µ∗ =
µξ 2

εcB

; f ∗ =
f ξ 2

εc2
B

; v∗ =
v

Vi

;

t∗ =
tVi

Di

; p∗ =
pDi

ηdVi

; g∗ =
g
g

; η∗ =
η

ηd

; ρ∗ =
ρ

ρd

.

The initial droplet diameter (Di) and impact velocity (Vi) are used as the
characteristic length and velocity scale, respectively.

The system of equations is, after dropping the asterisks,

∂c

∂t
+ v · ∇c =

1

Pe
∇2µ, (2.13)

µ = c3 − c − C2
h ∇2c, (2.14)

f = 1
4
c4 − 1

2
c2 + 1

2
C2

h |∇c|2, (2.15)

Re ρ

(
∂v

∂t
+ v · ∇v

)
= −∇p + ∇ · η[(∇v) + (∇v)T ]

+
1

CaCh

ρ(µ∇c − ∇f ) +
Bo

Ca
ρg, (2.16)

η =

(
c + 1

2

)
− 1

λ

(
c − 1

2

)
, (2.17)

1

ρ
=

(
c + 1

2

)
− κ

(
c − 1

2

)
, (2.18)

(∇ · ρv) = 0. (2.19)

The dimensionless groups that appear are: Péclet number Pe, Cahn number Ch,
Reynolds number Re, capillary number Ca, Weber number We, Bond number Bo,
density ratio κ and viscosity ratio λ, and are defined as

Pe =
ViDiξ

2

Mε
; Ch =

ξ

Di

; Re =
ρdViDi

ηd

; Ca =
ηdVi

γ
;

We =
ρdV

2
i Di

γ
= ReCa; Bo =

ρdD
2
i g

γ
; κ =

ρd

ρc

; λ =
ηd

ηc

.
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0
0

4

Stress–free BC for flow: ∂vr/∂z = 0 and ∂vz/∂z = 0
 For concentration  ∂c/∂z = 0 and ∂µ/∂z = 0

For concentration : ∂c/∂z = 0 or ε∂c/∂z = fw  and ∂µ/∂z = 0

Stress–free BC for flow:
∂vr/∂r = 0 and ∂vz/∂r = 0

z 

r

For concentration:
∂c/∂r = 0 and ∂µ/∂r = 0

Symmetry BC:
vr = 0 and ∂vz/∂r = 0

No-slip, no-penetration BC for flow: vr = 0 and vz = 0

For Concentartion:
∂c/∂r = 0 and ∂µ/∂r = 0

4

Figure 1. Computational domain, mesh, and initial and boundary conditions used for
droplet spreading simulations. The dashed lines represent c = ±0.9 contours.

3. System definition
Consider the impact of a liquid droplet on a smooth, chemically homogeneous solid

surface as shown in figure 1. Using axisymmetric coordinates and u and v to denote
the radial and axial component of the velocity, respectively, the governing equations
(2.13) – (2.19) take the following form:

∂c

∂t
+ u

∂c

∂r
+ v

∂c

∂z
=

1

Pe

[
1

r

∂

∂r

(
r
∂µ

∂r

)
+

∂

∂z

(
∂µ

∂z

)]
, (3.1)

µ = c3 − c − C2
h

[
1

r

∂

∂r

(
r
∂c

∂r

)
+

∂2c

∂z2

]
, (3.2)

f =
c4

4
− c2

2
+ C2

h

[
∂c

∂r

∂c

∂r
+

∂c

∂z

∂c

∂z

]
, (3.3)

Re ρ

(
∂u

∂t
+ u

∂u

∂r
+ v

∂u

∂z

)
= −∂p

∂r
+

1

CaCh

ρ

(
µ

∂c

∂r
− ∂f

∂r

)

+

[
1

r

∂

∂r

(
r2η

∂u

∂r

)
− 2ηu

r2
+

∂

∂z

(
η

(
∂u

∂z
+

∂v

∂r

))]
, (3.4)

Re ρ

(
∂v

∂t
+ u

∂v

∂r
+ v

∂v

∂z

)
= −∂p

∂z
+

1

CaCh

ρ

(
µ

∂c

∂z
− ∂f

∂z

)

+

[
1

r

∂

∂r

(
rη

(
∂u

∂z
+

∂v

∂r

))
+

∂

∂z

(
2η

∂v

∂z

)]
+

Boi

Ca

(
ρ − 1

κ

)
, (3.5)

1

r

∂(ρru)

∂r
+

∂(ρv)

∂z
= 0. (3.6)
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Figure 2. Comparison of (a) z-component of the velocity along the axis of symmetry after
the first and the fifth time step and (b) concentration and z-component of the velocity along
the axis of symmetry after the fifth time step. Simulation was performed with Ch = 0.04,
Pe = 2.5, Boi = 253 000, Re= 13, We = 15, λ = 1000, κ = 10, θ = 90◦ and �t = 10−4 on a
mesh consisting of 4900 second-order elements.

Note that for the impact of micron-size droplets considered in this paper, the effect
of gravity is negligibly small; typically Bo = 10−3. The gravitational force is therefore
set equal to zero except for the first time step. At the first time step, as described
later in § 4.1, an artificial value of the gravitational force number is prescribed via
the Bond to impart the desired impact velocity to the droplet. The gravity term in
(2.9), (2.16) and (3.5) is retained to depict a general impact scenario whereas Bo

is replaced by Boi in (3.5) to reflect the artificial nature of the gravitational force.
Equations (3.1)–(3.6) are supplemented with the initial and boundary conditions as
described in the next section.

4. Initial and boundary conditions
4.1. Specifying the initial (impact) velocity field

The diffuse-interface approach involves at least two fluids/phases, the droplet and the
ambient fluid in the present case. Because of the hydrodynamic coupling between
the two phases, it is not possible in DIM to specify the initial velocity as is done in
the sharp-interface approach where inside the droplet a velocity equal to the impact
velocity and zero outside is specified. The proof of this is given in Appendix A.

A method to overcome this difficulty is to exploit the density difference between the
droplet and the ambient fluid. A large body force (gravity) is applied on an initially
stationary droplet just for one time step. The body force, prescribed in terms of an
artificial Bond number whose value is estimated roughly as shown in Appendix B, is
such that it gives a non-dimensional velocity of −1 inside the droplet. Figure 2 shows
the z-component of the velocity along the symmetry axis of the droplet as a function
of z obtained with Boi = 253 000, We = 15, Re = 13, �t = 10−4 and κ = 10. Also,
the concentration along the symmetry line is plotted. The velocity immediately after
the first time step is oscillatory due to the sudden nature of accelerating the droplet
from rest to the impact velocity. The oscillations, however, dampen quickly in about
five time steps. As desired, for c = +1 which corresponds to the droplet, v ≈ −1 and
as c changes from +1 to −1 v goes from −1 to −4. Such an increase in v is also
predicted by equation (A 3).
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This method to specify the impact velocity by applying a large body force only for
one time step is used in all the droplet impact simulations reported in this study.

4.2. Initial concentration field

The initial concentration field is specified using the equilibrium solution corresponding
to the droplet in an infinite domain of ambient fluid. The specification is such that the
contour c = 0, which is considered to represent the droplet–ambient-fluid interface,
just touches the solid wall at z = 0.

4.3. Partial wetting boundary conditions

The wall, i.e. the solid surface at z = 0, may be neutral or may be preferentially wetted
by one of the components of the binary fluid. This effect is accounted for by following
the approach given in Cahn (1977) where solid–fluid interactions are assumed to be
short-ranged. By this assumption, the total system free energy F can be written as

F =

∫
Ω

f dΩ +

∫
Γ

fw dΓ, (4.1)

where fw is the specific wall free energy which depends only on the concentration at
the wall and Ω is the domain volume bounded with a wall of surface Γ . The surface
integral term in (4.1) represents the contribution of solid–fluid interactions.

At equilibrium, F is at its minimum. Minimizing F using methods of variational
calculus subject to natural boundary conditions (Beveridge & Schechter 1970) gives
the following boundary condition on surface Γ :

−ε
∂c

∂n
+

∂fw

∂c
= 0, (4.2)

where n is the direction normal to Γ .
For fw we use the form proposed by Jacqmin (2000):

fw = φ

(
c − c3

3

)
, (4.3)

where φ is assumed to be a constant and referred to as the wetting potential. It can
be made to vary spatially to indicate chemical heterogeneity of the solid surface. With
fw of the form (4.3), ∂fw/∂c evaluated at cB is zero, so at equilibrium the wall is not
enriched in one of the fluids and depleted in the other. Surface enrichment effects are
of interest when considering critical wetting (de Gennes 1985). In the present study
we do not consider such complicated effects and therefore restrict to the case where
no wall layer exists at equilibrium.

Equations (4.2) and (4.3) are non-dimensionalized using the dimensionless variables
defined in § 2.1 with the addition of γlv as the characteristic scale for the specific wall
free energy to give

−Ch

∂c

∂n
+ Φ(1 − c2) = 0, (4.4)

fw = Φ

(
c − c3

3

)
, (4.5)

where Φ = φcB/γlv is the dimensionless wetting potential.
Using Young’s equation which connects the contact angle with the surface and

interfacial tensions of the liquid (γlv) and the solid (γsv , γsl),

cos θ =
γsv − γsl

γlv

, (4.6)
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Φ can be related to the (equilibrium) contact angle θ to yield

cos θ = 4
3
Φ. (4.7)

From (4.7) it is concluded that for a contact angle θ equal to 90◦, Φ is zero and the
mixed boundary condition (4.4) reduces to a natural boundary condition. We have
applied the above boundary condition (4.4) assuming that the wall at z = 0 is at local
equilibrium.

A related issue is the existence of the advancing and receding contact angles that
usually have different values and depend on the velocity of the contact line. However,
this dependence has been studied only for slow, about a few mms−1, contact line
speeds. The contact line speed in droplet impact problems is considerable and can
reach values higher than the impact velocity (Fukai et al. 1993). Owing to the lack
of experimental data on the advancing and receding contact angles, some previous
researchers either used constant (but different) values for the advancing and receding
contact angles (Fukai et al. 1995) or gave experimentally measured (by themselves)
variations of the contact angle with time as an input to their model (Pasandideh-Fard
et al. 1996). Here, for simplicity (as the experimental determination of the dependence
of the advancing and receding contact angles on the contact line velocity is difficult
and ambiguous (Blake 1993)), we assume that the advancing and receding contact
angles are constant and equal to each other. Note, however, that the DIM applied
can be straightforwardly extended to take these effects into account, for example, by
making the wetting potential Φ a function of the contact line velocity.

4.4. Flow boundary conditions at the solid surface

From the analysis of Huh & Scriven (1971) it is well-known that the application of a
no-slip boundary condition for a moving contact line using a classical, sharp-interface
approach leads to a stress singularity. To overcome this problem, various models have
been proposed; prominent among them are slip models (Dussan V. & Davis 1974;
Hocking 1977; de Gennes 1985). In the diffuse-interface model, the contact line moves
via diffusion driven by the chemical-potential gradient as shown by Seppecher (1996),
Jacqmin (2000) and Chen et al. (2000). Hence, we apply a no-slip, no-penetration
boundary condition at the solid surface:

v = 0. (4.8)

Other boundary condition used is (shown in figure 1): no-mass-flux condition for
the chemical potential

∇µ · n = 0, (4.9)

where n is the unit normal vector to the boundary.

5. Numerical method
Instead of solving the full system (3.1)–(3.6) for c, µ, u, v and p, we decouple the

set into a flow problem (3.3)–(3.6) and a concentration problem (3.1)–(3.2).
The flow problem is solved using primitive variables, i.e. a velocity–pressure

formulation, and spatially discretized by a standard Galerkin finite-element method.
Crouziex–Raviart quadrilateral elements, with discontinuous pressure, that employ a
biquadratic approximation for velocity and a bilinear approximation for pressure, are
used. The time derivative in (3.4) and (3.5) is approximated by a first-order Euler
implicit method. The nonlinear convective term v · ∇v is linearized to vn−1 · ∇vn, with
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n denoting the current time level, using Picard’s method of successive substitution.
The discretized equations written in matrix form are,[

Re ρn−1
{
M + �t

(
Nn−1

v − Sv

)}
�t LT

L 0

] [
v

p

]
=

[
Mvn−1 + �t M f v

0

]
, (5.1)

where v is the discretized velocity, p is the discretized pressure, �t is the time
step, M is the mass matrix, Nv is the convection matrix, Sv is the stiffness matrix
containing the viscous terms, L is the matrix due to divergence operation, LT is the
matrix for the gradient operation and f v is the right-hand side containing the ρ(µ∇c−
∇f )/Ca Ch term. At the first time step f v also contains the body force term: (Boi/Ca)
(ρ − 1/κ).

The discretized set (5.1) of linear algebraic equations is solved using an integrated
method, with an iterative (conjugate gradients square) solver with incomplete
Cholesky decomposition as a preconditioner. In the integrated method (Segal 1995),
both the velocity and the pressure are used as unknowns, i.e. degrees of freedom.
Owing to the absence of pressure in the continuity equation, a zero block appears in
the main diagonal of the matrix. It is therefore possible that the first pivot during
the elimination process for the ILU preconditioner is zero. In order to ensure that
this does not happen, unknowns are renumbered per level and, also, globally so
that first velocities and then the pressure unknowns are used during the matrix
assembling.

Two second-order differential equations (3.1) and (3.2) that constitute the
concentration problem are solved in a coupled way. For temporal discretization
of (3.1) a first-order Euler implicit scheme is employed so that the discretized time
derivative is (cn − cn−1)/�t where �t is the time step size; superscript n represents
the current time level. The nonlinear c3 term in equation (3.2) is linearized by a
standard Picard iteration which yields (cn

i−1)
2cn

i where subscript i represents the ith
Picard iteration at time level n.

For spatial discretization of the set of equations a spectral-element method (Patera
1984; Timmermans, van de Vosse & Minev 1994) is used. In this method, similar to the
finite-element method, the computational domain is divided into Nel non-overlapping
sub-domains Ωe and a spectral approximation is applied on each element. The
basis functions, φ̂, that are used for spatial discretization, are high-order Lagrange
interpolation polynomials through Gauss–Lobatto integration points defined per
element. In the present study, however, the spectral order of approximation was
restricted to two. This restriction ensures that the finite-element mesh and the spectral-
element mesh used to discretize the flow problem and the concentration problem,
respectively, are identical. This eliminates any error that may be introduced when
interpolating the velocity from the finite-element mesh to the spectral-element mesh
and vice versa with the concentration. The higher-order (>2) spectral approximation
is useful when solving the flow problem in a stream-function–vorticity formulation
(Verschueren, van de Vosse & Meijer 2000; Keestra et al. 2003). For the problem
investigated in this paper, the flow problem is better solved in primitive variables, i.e.
using a velocity–pressure formulation as the boundary conditions for the velocity can
be prescribed (Anderson, Keestra & Hulsen 2006).

The weak form in the present axisymmetric case is derived following the approaches
of Gerritsma & Phillips (2000) and Fournier et al. (2004) where the cylindrical radius
appearing in the definition of the infinitesimal volume element is incorporated into
the weighting function. This is done to circumvent ‘0=0’ trivial solutions which may
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arise due to application of Gauss–Lobatto–Legendre to axisymmetric problems in the
limit of r = 0. The resulting set of discretized equations written in matrix form is⎡

⎢⎣ M + �tÑ
n

c

�t

Pe
(S̃µ − Ñµc)[

1 −
(
cn
i−1

)2]
M + 2ΦChc

n
i−1MBC − C2

h(S̃c − Ñcµ) M

⎤
⎥⎦

[
cn
i

µn
i

]

=

[
Mcn−1

0

ΦCh

[
1 +

(
cn
i−1

)2]
MBC

]
, (5.2)

where cn
i is discretized concentration at the ith Picard iteration at time step n,

µn
i is discretized chemical potential at the ith Picard iteration at time step n, cn−1

is discretized concentration at time step n − 1, M is the mass matrix, Ñc is the
convection matrix, S̃µ is the Cartesian diffusion matrix operating on µ, MBC is the
mass matrix arising through the linearization of boundary condition (4.4) and S̃c

is the Cartesian diffusion matrix operating on c. Ñcµ and Ñµc are convection-like
matrices resulting from the description in axisymmetric coordinates and operating
on c and µ, respectively. These convection-like terms have 1/r as a ‘radial velocity’
while the ‘axial velocity’ is zero in both cases. Should these convection-like terms be
evaluated at r = 0 while performing element integrals using Gauss–Lobatto–Legendre
integration, they would create numerical problems. To avoid this, a small factor δ is
added to r . The value of δ was chosen to be 10−3. This value was used since identical
results were obtained with δ = 10−3 and 10−6. The discretized set (5.2) is also solved
using the previously mentioned iterative solver.

The scheme to advance in time is as follows:
Step 1. Given the initial concentration profile c0

0 and the initial velocity field v0,
compute f, µ, ρ and η.

Step 2. Solve the system (5.1) for velocity (v1) with terms containing concentration
treated explicitly.

Step 3. Solve the system (5.2) iteratively for concentration (c1) and chemical
potential (µ1). Iterations are required due to the nonlinear term. Iteration is started
with c1

1 = c0 and stopped when max |c1
i − c1

i−1| � δc. The tolerance, δc, is set equal to
10−6.

Step 4. Update the time and repeat steps 2–4.
The numerical scheme described above is implemented in SEPRAN (Segal 1995), a

general finite-element package used for simulating droplet impact on a computational
domain spanning a dimensionless length of 4 in both the radial and axial directions
as shown in figure 1.

6. Results and discussion
Numerical results for droplet impact, more precisely for the spreading that ensues

just after a droplet hits a solid surface, under conditions similar to inkjet printing,
obtained using DIM are presented here. The results cover the range of values of the
Reynolds number Re: 1.5 to 130, the Weber number We: 0.15 to 150 and the contact
angle θ: 45◦ to 135◦. For this parametric range, the impact can still be described in an
axisymmetric framework (Kim, Park & Min 2003; van Dam & Clerc 2004). All the
results reported here were obtained with a fixed value of 0.04 for the Cahn number
Ch and a fixed value of 10 for the density ratio between the droplet the ambient
fluid. The interface thickness for a simple liquid-liquid system is typically about a



Diffuse-interface modelling of droplet impact 109

few nanometres. This means that Ch is about 10−3 as the droplet sizes studied here
are about tens of microns. Such a small value of Ch is, however, computationally
prohibitive to use and hence Ch = 0.04 was chosen for numerical convenience, as
has become customary (Chella & Viñals 1996; Jasnow & Viñals 1996; Jacqmin 1999;
Verschueren et al. 2000; Keestra et al. 2003; Yue et al. 2004; Khatavkar, Anderson &
Meijer 2006). Note that adaptive meshing such as in Barosan, Anderson & Meijer
(2006) can be implemented in an attempt to capture the real value of Ch, but this
is beyond the scope of the present work. The use of numerically wide interfaces
exacerbates the curvature-dependent solubility inherent in DIM as it is proportional
to the interface thickness, see for example Jacqmin (1999) and Naumann & He
(2001). In view of the values used for the density ratio and the Cahn number the
system modelled here can be best considered as one where the ambient fluid is a
liquid having some inertia rather than an inertialess gas. As mentioned earlier in
§ 2, the thermodynamic formulation to account for large density ratios results in a
fairly complex nonlinear model even when the flow is simplified using the Hele-Shaw
approximation (Lee et al. 2002a, b). In addition to (renormalized) mass fraction, it
may be necessary to include a squared gradient contribution of the density to the
free energy (2.1) (Jasnow & Viñals 1996). In the current case, where inertia drives
the flow, the complexity is likely to increase further. Hence to simplify the model we
neglect the density difference in the thermodynamic formulation while retaining it in
the hydrodynamic treatment.

Also, other than in § 6.8 where the effect of the Péclet number is considered, a fixed
Péclet number of 2.5 was used. This means that when the initial droplet diameter
or impact velocity are varied, rather than fixing the absolute values of the interface
thickness and the mobility, the ratio of interface thickness to initial droplet diameter
and the relative importance of convection to diffusion are kept constant. Most of the
computations were performed with a time step of 10−4 on a graded mesh, as shown
in figure 1, comprising about 4900 second-order elements, though in some cases, for
example to establish time-step and mesh independence of the results, a time step of
5 × 10−4 and a mesh of 8100 elements has also been employed. A typical run with a
time step of 10−4 on a mesh of 4900 elements takes about 2–3 min to advance one
step in time.

First, impact under conditions that yield markedly different outcomes are described
which demonstrate the capability of DIM to handle topological transitions. The
resolution of other important issues related to the droplet spreading have been
studied among others by Seppecher (1996), Jacqmin (2000) and recently by Khatavkar,
Anderson & Meijer (2007) who show that the capillary spreading of a diffuse droplet
tends to approach the classical sharp-interface results in the limit of zero contact
angle. Next, the influence of individual parameters, such as droplet diameter, impact
velocity, surface tension, droplet viscosity, the contact angle, etc. on the impact process
is given. The results are then mainly presented as a plot of the spread factor, defined
as the ratio of the diameter of the wetted surface area, i.e. the contact diameter of
the droplet with the solid surface, to the initial droplet diameter and given by the
position where c = 0 contour intersects with the solid surface at z = 0, versus the
dimensionless time.

6.1. Pedot droplet

We start with the description of a 67 µm diameter droplet impacting with a velocity
of 4 m s−1 on a smooth, chemically homogeneous solid surface. The droplet material
is assumed to have a dynamic viscosity of 0.02 Pa s, surface tension with the ambient
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Figure 3. Droplet shapes with the corresponding velocity field at different times during
spreading obtained for a Pedot droplet of diameter of 67 µm impacting with a velocity of
4m s−1 on a flat solid surface. Simulation was performed with Ch = 0.04, Pe = 2.5, Re= 13,
We = 15, λ = 1000, θ = 60◦ and �t = 10−4 on a mesh consisting of 4900 second-order
elements.

fluid of 0.07 Nm−1 and a fixed contact angle of 60◦ with the solid surface. These
conditions are representative of jetting a droplet of aqueous Pedot solution in air onto
a photoresist surface (Duineveld 2003). The viscosity ratio between the droplet and
the ambient fluid is taken to be 1000, which is close to the actual value of 1100 for
a droplet of aqueous Pedot solution in air. The above conditions yield the following
values for the dimensionless groups: Re = 13, We = 15 and Ca = 1.15. Owing to
the initial impact energy possessed by the droplet, it begins to spread and deform in
shape, with a very small foot at the base that can be seen in figure 3, for example at
t = 0.3 µs. Until the early stage of spreading, i.e. t ≈ 2.5 µs, the maximum splat height
is at the axis of symmetry of the droplet. After this time, the maximum splat height
is the height of the ring that forms at the periphery of the droplet due to a faster
decrease in the height of the droplet at the axis of symmetry than the corresponding
increase of the droplet base radius. At some point in time the impact energy falls,
partly due to dissipation as viscous work and partly due to storage as surface energy,
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Figure 4. Droplet shapes with the corresponding velocity field at different times during
spreading obtained for a Pedot droplet of diameter of 30 µm impacting with a velocity of
1 m s−1 on a flat solid surface. Simulation was performed with Ch = 0.04, Pe = 2.5, Re= 1.5,
We = 0.43, λ = 1000, θ = 90◦ and �t = 10−4 on a mesh consisting of 4900 second-order
elements.

to such a level that the height at the axis of symmetry reaches a minimum. The
droplet apex at the axis of symmetry then starts to retract while the droplet base still
continues to spread, albeit with a decreasing speed. The liquid in the ring flows to
meet these demands, with the apparent generation of a vortex as seen, for example at
t = 11.7 µs. Consequently, the ring diminishes in size. At about t = 14 µs, the droplet
base spreads to a maximum extent. Beyond this time, the entire droplet recoils to
attain the equilibrium shape.

Next, we consider the impact of a 30 µm diameter droplet with a velocity of 1 m s−1.
The solid surface is assumed to be equally wetted by the droplet and the ambient
fluid, so the contact angle is 90◦. Keeping the other parameters the same as above,
the dimensionless groups Re, We and Ca now have values of 1.5, 0.43 and 0.29,
respectively. In this case, as shown in figure 4, the droplet starts to spread without a
foot as the contact angle is 90◦. Also, since Re ≈ 1 and We < 1, the resisting viscous
and surface forces are more dominant than the inertia compared to the previous
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Figure 5. Spread factor versus time corresponding to figure 4.

case. Consequently, the droplet deforms to a lesser extent and no ring is formed.
At t = 5.2 µs the droplet apex attains a minimum and thereafter retracts under the
action of surface tension. But, the retraction is greater than the equilibrium value.
So, the droplet apex, after reaching a maximum at t = 14 µs moves downward again.
During all this time, the droplet base spreads without recoiling. On a plot of spread
factor versus time, see figure 5, a drastic change in the slope can be seen at a
dimensionless time t = 0.5(15 µs) which is probably due to the shift from inertia to
capillary spreading of the droplet base.

Finally, figure 6 shows the time sequence of the impact of a 157 µm diameter Pedot
droplet with a velocity of 0.83 m s−1 on a hydrophobic surface characterized by a
contact angle of 135◦. The viscosity of the droplet in this case is taken to be 0.01 Pa s
while the surface tension is kept the same as before. The values of Re, We, Ca and λ
are therefore 13, 1.5, 0.115 and 1000, respectively. Owing to the large contact angle
the droplet has with the solid, it spreads a maximum of only 1.1 times its initial
diameter. Also, as the viscous force is about 10 times smaller than the inertial force,
most of the initial impact energy, apart from that dissipated in deforming the droplet,
is stored as surface energy. As a consequence, the droplet recoils intensely and at
t ≈ 220 µs lifts off entirely from the solid surface with a top-heavy shape similar to
that shown in Renardy et al. (2003) for mm size droplets.

6.2. Water droplet

Now, we consider impact of a 157 µm water droplet with a velocity of 0.83 m s−1,
with Re, We, Ca and λ of 130, 1.5, 0.0115, and 100, respectively. This is an example
where inertial and surface forces are nearly equal to each other but are larger than
the viscous forces. The spreading process is such that at t ≈ 28 µs the droplet apex at
the axis of symmetry ceases to be maximum and a ring begins to form at the droplet
periphery. The central liquid film, seen in figure 7 at t = 51.8 µs and connected with
the ring, ruptures at t = 57 µs creating a toroidal droplet with a central dry-out.
Occurrence of a toroidal droplet with a central dry-out was recently reported by
Renardy et al. (2003) for droplets of millimetre size. They also presented a numerical
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Figure 6. Droplet shapes with the corresponding velocity field at different times during
spreading obtained for a Pedot droplet of diameter of 157 µm impacting with a velocity of
0.83 m s−1 on a flat solid surface. Simulation was performed with Ch = 0.04, Pe = 2.5, Re= 13,
We = 1.5, λ = 1000, θ = 135◦ and �t = 10−4 on a mesh consisting of 4900 second-order
elements.

curve delineating critical values of We and Re for which the droplet becomes a torus
after impact. According to that curve a toroidal droplet could not form at the present
values We = 1.5 and Re =13. A reason for this may be related to the values of Pe
and Ch used in the present study as briefly discussed further on in § 6.8. The droplet
with a torus shape spreads until t = 179 µs at which maximum spreading is reached
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Figure 7. Droplet shapes with the corresponding velocity field at different times during
spreading obtained for a water droplet of diameter of 157 µm impacting with a velocity of
0.83m s−1 on a flat solid surface. Simulation was performed with Ch = 0.04, Pe = 2.5, Re =130,
We = 1.5, λ = 100, θ = 60◦ and �t = 5 × 10−4 on a mesh consisting of 4900 second-order
elements.

and thereafter it recoils with a continuous decrease in the surface area of the dry-out
region. At t ≈ 369 µs the dry-out region completely vanishes due to confluence of the
inner, receding edge of the toroidal droplet. Owing to the moderately high value of Re
and low value of We, most of the impact energy is stored as surface energy which leads
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Figure 8. Effect of the initial droplet diameter on a Pedot droplet impacting at a velo-
city of 4 m s−1. Other simulation parameters: Ch = 0.04, Pe= 2.5, λ= 1000, θ = 90◦ and �t =
1 × 10−4 on a mesh consisting of 4900 second-order elements.

to recoil intense enough to result in a partial rebound of the droplet, i.e. the droplet
breaks up into two parts. The detached larger part of the droplet does not possess
sufficient energy to fly off and, since gravity is neglected, it does not fall back onto the
smaller part that remains in contact with the solid surface. It relaxes to a spherical
shape and starts to dissolve into the ambient fluid owing to the solubility inherent in
the c4 description of the free energy (Naumann & He 2001; Keestra et al. 2003).

6.3. Effect of initial droplet diameter

Figure 8 shows the effect of varying the initial droplet diameter while other parameters
are held constant, on a plot of the spread factor versus the dimensionless time. The
larger droplet (Re = 13) spreads more than the smaller droplet (Re ≈ 6) owing to
higher impact energy relative to the resisting viscous work. But, on roughly doubling
of the initial droplet diameter the maximum spread factor increases only by 12%.
Also, the time at which maximum spread factor is reached increases with the initial
droplet diameter.

6.4. Effect of impact velocity

The influence of varying the impact velocity on impact of a 30 µm Pedot droplet
is shown in figure 9. Similarly to increasing the initial droplet diameter, increasing
the impact velocity increases the maximum extent of spreading. The dimensionless
time required to attain the maximum spreading shows a non-monotonic behaviour,
decreasing first as the impact velocity increases from 1 to 4 m s−1 and increasing
afterwards. This is because at Re ≈ 1 for impact velocity of 1 m s−1 the spread
factor does not overshoot the equilibrium value. Nonetheless, the dimensional time
required to approach the maximum extent of spreading decreases monotonically with
increasing impact velocity.
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Figure 9. Effect of impact velocity on impact of 30 µm Pedot droplet. Other parameters are
same as in figure 4.

6.5. Effect of Weber number

Figure 10 displays the influence of the Weber number on the impact process at a fixed
Re of 13. Since Re is kept constant, We can only be varied by changing the surface
tension and hence this can also be regarded as the effect of surface tension. The
maximum value of the spread factor shows a slight increase from about 1.46 to 1.5
as We decreases from 150 to 1.5. This behaviour is in contradiction with the results
reported on millimetre size droplets (Fukai et al. 1993; Pasandideh-Fard et al. 1996;
Roisman et al. 2002) where an increase rather than a decrease of maximum value
of the spread factor has been observed. This deviation may be due to a difference
of about one or two orders-of-magnitude in the values of Re and We between the
current micron-size case and millimetre-size studies reported in the literature. It seems
that for We ≈ 1 the capillary pressure, in addition to inertia, acts as a driving force
for spreading, which may be possible as the initial droplet configuration is not the
equilibrium configuration. Nevertheless, a decrease in time at which the maximum
of spread factor is attained and subsequent, as expected, faster recoil of the droplet
with a decrease in We is in accordance with the previous results on millimetre size
droplets.

6.6. Effect of Reynolds number

The effect of the Reynolds number at a fixed We = 1.5 is studied by changing
the droplet viscosity. The viscosity ratio is also changed accordingly so that the
viscosity of the ambient fluid remains the same. Figure 11 shows that as the Reynolds
number increases the extent of droplet spreading increases. Also, the time to reach
the maximum spread factor shifts to later stages. This is due to the relative increase in
the inertia that drives the flow compared to the viscous forces that oppose it. In fact,
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Figure 10. Effect of Weber number (surface tension) on droplet impact process at Re = 13
and θ = 90◦.
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Figure 12. Effect of wettability on droplet impact process at Re= 13 and We = 15. Other
parameters same as in figure 3.

for Re= 1.3 these two forces are almost equal and hence the droplet never spreads
beyond its equilibrium value. As a consequence of the increased spreading the recoil
behaviour is also affected, which leads to partial rebound of the droplet in the case
of Re = 130.

6.7. Effect of wettability

Figure 12 shows the effect of the contact angle at a fixed Re= 13 and We = 15 where
it is obvious that the contact angle affects the entire impact process. In particular, the
maximum spread factor, the time to attain it and the time the droplet remains near
the maximum spread factor increase with a decrease in the contact angle. This effect
of contact angle, in accordance with the results of Fukai et al. (1995), on the impact
behaviour holds even when We is decreased by a factor of ten to 1.5 and/or Re is
increased to 130, as can be seen in figures 13 and 15. Also, with a decrease in We to
1.5, the surface tension becomes more dominant with its obvious effect on the recoil
behaviour allowing us to understand better the influence of the contact angle on this
stage of the process. For Re= 13, see figure 13, with an increase in the contact angle
from θ = 60◦ to 90◦ the droplet oscillates more before stabilizing to an equilibrium
value. These oscillations grow in size with a further increase in θ from 90◦ to 120◦,
until at θ ≈ 135◦ the entire droplet lifts off from the solid surface, i.e. total rebound
of the droplet occurs.

The effect of θ on the recoil behaviour at Re = 130 displays even richer phenomena
as depicted in figures 14 and 15. Owing to high energy impact, the droplet in each
case shows a central dry-out region at almost the same time and acquires a toroidal
shape whose width increases with a decrease in the contact angle. After the spreading
reaches a maximum the toroidal droplet recoils with a continuous decrease in the
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Figure 13. Effect of wettability on droplet impact process at Re= 13 and We = 1.5. Other
parameters same as in figure 6.

size of the dry-out region and at some point in time, which again decreases with a
increase in the contact angle, the inner side of the torus comes close enough to merge.
The merging happens at the edge of the torus for contact angles smaller than 90◦ and
near the apex, resulting in an entrapment of a small amount of ambient fluid, for
contact angles greater than 90◦. The size of the entrapped ‘bubble’, though larger for
larger contact angles, is still smaller than the stable size dictated by the c4 description
of the free energy and hence it dissolves into the recoiling droplet. The recoiling halts
and spreading restarts for θ = 45◦ at t ≈ 659 µs. The recoiling for θ = 60◦ and 90◦

results in a partial rebound of the droplet leaving progressively smaller amounts of
the droplet on the solid surface that subsequently dissolves into the ambient fluid,
while for θ = 120◦ the droplet breaks up into two unequal parts after total rebound
of the droplet occurs. Owing to the solubility of physical nature inherent in the c4

description of the free energy, as noted earlier, the smaller part of the droplet later
dissolves, albeit at a physically unrealistic higher rate, into the ambient fluid. Note
that a more immiscible system can be formulated either by decreasing the value of
Cahn number or by modifying the description of the homogeneous part of the free
energy with a higher (greater than c4) approximation or using a Flory–Huggins type
of free energy (Keestra et al. 2003) that may alleviate the observed dissolution. Here
we prefer to use the classical and widely used c4 approximation for the homogeneous
part of the free energy since this a first attempt to model droplet impact using DIM.

6.8. Influence of Péclet number

The material-dependent mobility, analogous to the slip length in the slip models, is
an important model parameter. It not only governs the contact line speed, via a
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Figure 14. For caption see facing page.

diffusional flux in the cases where a no-slip velocity boundary is imposed, but also
imparts the interface with certain resistance to convective straining (Jacqmin 1999).
After non-dimensionalization of the governing equations this mobility is contained
in the Péclet number. The Péclet number is therefore important, which is reflected in
figure 16 where a comparison of the spread factor obtained using Pe= 1, 2.5, 5 and
10 is made. It is clear that the spreading behaviour is significantly affected by Pe.
Increasing Pe or equivalently decreasing the mobility slows the process of spreading,
i.e. the spreading rate is decreased, while the extent to which a drop spreads, except
for Pe = 10, as characterized by the spread factor, remains roughly the same. For
Pe = 10, contact-line pinning occurs which results in rupture of the central part of
the droplet; creating a torus with dry-out.



Diffuse-interface modelling of droplet impact 121

80 160 2400

80

160

240
t = 51.8 µs

80 160 2400

80

160

240
t = 56.5 µs

80 160 2400

80

160

240
t = 211.9 µs

80 160 2400

80

160

240
t = 520.4 µs

80 160 2400

80

160

240
51.8 µs

80 160 2400

80

160

240
56.5 µs

80 160 2400

80

160

240
211.9 µs

80 160 2400

80

160

240
520.4 µs

80 160 2400

80

160

240
 51.8 µs

80 160 2400

80

160

240
56.5 µs

80 160 2400

80

160

240
211.9 µs

80 160 2400

80

160

240
520.4 µs

80 160 2400

80

160

240
1.8 µs

80 160 2400

80

160

240
56.5 µs

80 160 2400

80

160

240
211.9 µs

80 160 2400

80

160

240
520.4 µs

(a) (b) (c) (d)

Figure 14. Influence of wettability on impact of a droplet of diameter of 157 µm impacting
with a velocity of 0.83 m s−1 on a flat solid surface. (a) θ = 45◦, (b) θ = 60◦, (c) θ = 90◦ and
(d) θ = 120◦. Other simulation parameters same as in figure 7.

Experimentally† no breakup was observed for the condition used in the simulation.
So, Pe = O(1) seems to be necessary for the resolution of the contact line singularity a
when no-slip boundary is used, a condition met in Jacqmin (2000) where low-velocity
flow was considered. A rough estimate of Pe gives a value of 7 (based on mobility in
the gas phase) and a value of 70 000 (based on mobility in the liquid phase). For this
estimation, the droplet diameter, the impact velocity, interface thickness, interfacial
tension and the mobilities in the gas and liquid phases are assumed to be 50×10−6 m,
1 m s−1, 10−9 m, 70 × 10−3 N m−1, 10−13 m5 s−1 J−1 and 10−17 m5 s−1 J−1, respectively.
The values of mobility in the gas phase and liquid phase are typical values for gas
diffusing in a gas and liquid diffusing in liquid in the absence of solid.

† Private communication with P. C. Duineveld who had performed some experiments under
similar conditions in the context of another study. The main difference between our simulations and
those experiments is that in the experiments the droplet material exhibited a zero receding contact
angle with the solid surface.
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Figure 15. Effect of wettability on droplet impact process at Re= 130 and We = 1.5. Other
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Figure 16. Effect of Péclet number on droplet impact process. Other parameters used are
Ch = 0.04, Re =13, We = 15, θ = 90◦ and λ = 1000.

6.9. Effect of viscosity ratio

The DIM, considered here, is a two-phase model with the droplet dynamics coupled
to that of the ambient fluid which may affect the droplet spreading process. This
is considered in this section by performing simulations for four different viscosity
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Figure 17. Effect of viscosity ratio on droplet impact process. Other parameters same
as in figure 16.

ratios: 1, 10, 100 and 1000. Note that an increase in viscosity ratio means a decrease
in ambient fluid viscosity. Figure 17 shows that a decrease in the viscosity of the
ambient fluid leads to faster spreading.

7. Conclusion
A diffuse-interface model was applied to model the impact of micron-size droplets

on a solid surface under conditions similar to those in inkjet printing. The model
applied could capture droplet spreading, recoiling and rebounding (total and partial)
off the solid surface. The viscosity of the droplet or more appropriately the Reynolds
number is important during the spreading stage of the impact and in particular
determines whether the droplet will spread beyond its equilibrium extent, i.e. whether
recoiling will occur or not. During the droplet recoiling, the surface tension or
equivalently the Weber number plays a significant role. The wettability of the solid
surface was found to affect the entire impact process and was seen to have a dominant
role in determining the outcome of the process.

This work is sponsored by the Dutch Polymer Institute (Project No. 178).

Appendix A. Specifying the initial velocity field
The prescribed initial velocity field should satisfy the equation of continuity, which

in axisymmetric coordinates is given by (3.6). In previous studies which considered
flow only inside the droplet and neglected the ambient fluid dynamics, the radial
component u of the initial velocity field is assumed to be zero. Considering this
assumption to be valid in the present two-phase flow case, (3.6) reduces to

∂(ρv)

∂z
= 0, (A 1)
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which upon integration yields

ρv = K, (A 2)

where K is the constant of integration. Requiring that inside the droplet v equals the
impact velocity Vi , we find K = ρdVi and (A 2), after rearrangement, becomes

v =
ρd

ρ
Vi. (A 3)

It is easy to see from (A 3) that outside the droplet, the axial velocity v is greater than
(or at least equal to) the impact velocity Vi and not zero as is usually prescribed in
studies using the classical sharp-interface model.

Appendix B. Rough estimate of the magnitude of the body force
Assuming that the droplet is a rigid sphere, (3.5) reduces to

Re ρ

(
∂v

∂t

)
=

Boi

Ca
ρ, (B 1)

which upon integration, with v0 denoting the initial velocity, yields

Re
(v − v0

t

)
=

Boi

Ca
. (B 2)

Rearranging and noting that t equals �t as gravity is applied only for one time step,
leads to

Boi = Re Ca
1

�t
. (B 3)
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